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1. INTRODUCTION 

The state-of-the art communication systems incorporates a number of critical features 
that have to be necessarily taken into account. The matter is that highly stringent 
requirements are now imposed upon these system not only as regards the authenticity 
of data and their transfer rate but also in terms of protecting some transmitted 
information against an unauthorized access, let alone the environmental safety [1-3]. 

The authors in [3] came up with the following concept. Their suggestion was that 
in a communication system a chaotic signal should be used as an informative carrier. 
In contrast to conventional communication systems where a reference signal is 
produced on a receiving side, the transmitter of this particular system is set to radiate a 
sequence of pairs of chaotic signal fragments. Each pair matches a single information 
bit.  
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The first fragment in the pair is a reference signal, the second one is an information 
signal given that an actual bit is equal to “1”, the information signal is a replica of the 
reference signal, and once it is equal to “0”, it is held to be opposite to the reference 
signal. The main feature of this system is the feasibility of incoherent signal reception. 

Furthermore, in the above type of the system, a noise source can be made use of to 
generate signals instead of a dynamic chaos oscillator. By noise we imply that a certain 
broadband random process is realized. 

Thus, by so doing one can build a communication system involving a noise carrier 
[4]. We will consider the signals to be generated and processed in the system at hand 
by digital methods in a discrete time. The reference signal will then take the form of 
vector 1 2( , , ..., )nx x x x , whereas the transmission signal that persists on a signal bit 
interval is written as: 

 

     
, 1,2,..., ,

, 1, 2,...,2 ,
k

k
k n

x k n
y

x k n n n 


     

 

 

where 1  , if the bit “1” is transmitted at the given instant of time, and 1    if the 
current bit is  equal to “0”. The dimensionality of vector n  is determined by the 
number of clock time intervals t  of the ADC-DAC system, these intervals fitting into 
a half of the bit interval of length / 2T . 

Thus, over the length of a single bit interval the transmitter signal can be given as a 
cortege of vectors 

 

                                  ,y x x . 
 

Let us regard the random process that generate the reference signal x  as the one 
meeting several additional condition: i) the given process is stationary; ii) any one-
dimensional distribution of the process is symmetrical about zero; iii) the process 
correlation interval is far shorter than the clock time interval t . 

Under these conditions the value of x  can be thought of as a random vector the 
coordinates of which are the realizations of n  of equally distributed independent 
random quantities. By virtue of the fact that these quantities are symmetrically 
distributed with respect to zero, their mathematical expectation is equal to zero. 

As the signal passes through the communication channel, it is impacted by the 
additive noise. We will take advantage of realizing the steady broadband Gaussian 
process with zero mathematical expectation as a mathematical model. In the discrete 
time, on the bit interval T , we obtain two vectors that are defined as noise, i.e., 1n  
acting upon the reference signal and 2n  affecting the information signal. 

On a receiving side we calculate the scalar product  
 
                                 1 2,r x n x n     

 
whose sign specifies the decision about “0” or “1”. 
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2. PROBLEM STATEMENT 

According to [5] a proposal was advanced to apply permutations of discrete elements 
of signal y . This procedure affords two opportunities: i) to diminish the correlation 
between the reference and data signals in an effort to improve the data protection level 
against any external interferences; ii) to build a multiple-access communication system 
with a code division of channels. 

A specific rearrangement of the vector-signal, which tends to substantially 
decrease an absolute quantity of the product ,x x   is performed in a simplex 
regime on a receiving side.  

Any outside man who is incompetent to go by the permutation rules is not only 
unable to gain an access to information, but rather he is totally incapable of 
determining the transfer rate of a signal and its structure. Neither spectral nor 
autocorrelation analysis will ever reveal any periodicity in a transformed signal.  

The receiver accomplishes an inverse permutation of coordinates prior to 
calculating the value of r . 

Each transmitter-receiver pair in the multiple-access system relies upon the 
permutation rule of its own. This permits of carrying out a code division of channels. 
At the same time the authors in [5] demonstrate that the increase in the number of 
communication channels concurrently in use will bring about a dramatic reduction in 
the systems noise immunity. 

A possibility for constructing a different transport system capable of enchaining 
the noise immunity is shown in [6]. However, the issue pertinent to validating the 
efficiency of this system of transformation, investigating its properties as well as 
finding a maximal set of transformations remains open. 

Thus, a primary goal of the present work is to elaborate the technique for 
development of a maximal system of linear transformation of a discrete signal. This 
system is to contribute toward generating a set of orthogonal signals to be utilized in 
the multiple-access communication system. 

 
3. PROBLEM SOLVING 

At the very outset, let us have the problem formalized mathematically. Assume nR  to 
be the n -dimensional Euclidean space, while x  is the fixed null vector of this space, 
which is specified by its coordinates in a standard basis. It is necessary to construct a 
maximal system of linear transformations 1 2, ,..., qA A A  for which the following 
conditions are met: 
 

, 0, 1,2,..,iA x x i q  ,           (1) 
 

2, | | , 1,2,.., , 1,2,...,i j ijA x A x x i q j q    ,         (2) 
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where ij  is the Kronecker symbol: 
 

                                        
1, ,
0, .ij

i j
i j




  
 

 
Since it is essential that the signal energy be conserved for constructing the 

orthogonal system of signals, the following equality has to be satisfied: 
 
                                 | |, 1,...,iA x x i q  . 
 
This means that a search for transformation iA  needs to be made in a group of 

orthogonal transformations  O n . 
In view of [7], it may be argued that iA  is for the orthogonal skew-symmetric 

(sign-changing) operators. 
On the strength of operators orthogonality we have 
 
                                 1 * , 1,2,...,i iA A i q   , 

 
And by virtue of skew symmetry 
 
                                       * , 1,2,...,i iA A i q   , 
 
where *

iA  is the conjugation operator to iA . 
Whereupon we have 
 

 2 * 1 , 1,2,...,i i i i i i iA A A A A A A E i q           ,           (3) 
 

where E  is the identical spatial transformation nR . Thus, the square of each operator 
of the system is the antipodal mapping. 

In view of condition (2), at i j , we obtain 
 
                                *, , , , 0i j i j i j i jA x A x x A A x x A A x x A A x      , 

 
i.e., conditions (1) is met for the product i jA A   i j . Thus, any pairwise product of 
operators for the system is a skew-symmetric orthogonal operator as well. 

Upon having done a series of simplifications in the equality 
 

    * * *, , ,

,
i j i j j i i j j i i j

j i i j

A A A A A A A A A A A A

A A A A

       

 
        (4) 
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we find that the pairwise product of the systems operators is anticommutative. 
Now consider the unit vector 0x  of the vector x . If x  traverses the space nR  

(with the exception of the null vector), then 0x  describes the sphere 1nS  . In this 
instance each mapping 0iA x , which satisfies (1), generates the field of vectors tangent 
to the sphere 1nS  . In [8] it is shown that the field being tangents to the sphere of 
vectors is available only when the dimensionality of the sphere 1n   is add. That 
signifies that the sought-for system of linear operators can be constructed in the even-
dimensional space only. 

Each operator of the system has a basis in which its matrix takes on the following 
form [7] 

 

                                 

0 1 0 0 ... 0 0
1 0 0 0 ... 0 0

0 0 0 1 ... 0 0
0 0 1 0 ... 0 0
... ... ... ... ... ... ...
0 0 0 0 ... 0 1
0 0 0 0 ... 1 0

 
  
 
 

 
 
 
 
  

. 

 
In this basis an operator allows performing the transformations of coordinates 

using the formula: 
 
                                    1 2 3 4 1 2 1 4 3 1, , , ,..., , , , , ,..., , .n n n nx x x x x x x x x x x x      

 
In geometrical point of view this operator works as follows: the basis is split into 

the pairs of vectors and in each two-dimensional plane, which is specified by an 
appropriate pair, the turn is made by / 2 . 

Now consider the linear combination of the operators 
 
                                  1 1 2 2 ... q qA A A      

 
with real coefficients 1 , 2 , …, q . A set of all such linear combinations makes up 
the real Euclidean space. 

Now we will find the quadratic form of this space, which is consistent with the 
algebraic operators: 

 
                           2 2 2 2 2 2 2

1 1 2 2 1 1 2 2... ...q q q qA A A A A A              
                                  1 2 1 2 1 3 1 3 1 3 3 1 1 2 2 1...A A A A A A A A            . 
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Taking into account of equalities (3) and (4) we arrive at 
 

 2 2 2 2
1 1 2 2 1 2... ...q q qA A A E E E               

 

1 2 1 2 1 3 1 3 1 3 1 3 1 2 1 2...A A A A A A A A              
 

 2 2 2
1 2 ... .q E        

 
According to [9], the system of operators 1 2, ,..., qA A A  can subsequently be thought 

of as the basic elements of Clifford algebra  0,Cl q  with positive signature 0p   and 
negative signature q  

The technique for constructing the real irreducible matrix representations of basis 
elements of the maximal Clifford algebra with a preset signature can be found [10]. It 
is to be noted that all the matrixes already constructed in this fashion are of 2 2m m  
dimension and, as a consequence, we first focus our attention upon dimensionality 
spaces of 2mn  . 

Here again we should stress the point that in order to solve the problem that has 
been formulated in our work, our immediate concern will only be those maximal 
Clifford algebras that, with a fixed n , have the greatest negative signature. As will be 
apparent from the analysis of the paper in [10], we are in a position to obtain an 
appropriate sequence of maximal algebras, the beginning of which is listed in Table 1 
 
TABLE 1: Maximal Clifford algebras with the greatest negative signatures at a specified space 
dimension n  

m 1 2 3 4 5 6 7 8 9 … 
n 2 4 8 16 32 64 128 256 512 … 

Sign. (0.1) (0.3) (0.7) (1.8) (0.9) (0.11) (0.15) (1.16) (0.17) … 
 

As it is evident from Table 1, the negative signatures form a sequence all the 
members of which can be obtained by adding the number multiple of 8 for the first 
four elements of the given sequence in the order of 1, 3, 7, 8. It is precisely this 
sequence that defines the maximal number of q  elements of the sought-for system of 
transformations. 

Now we thick it fit to scrutinize the technique of constructing the matrix 
representations of basis Clifford algebra elements (this technique is suggested in [10]). 

At the very outset we shall get down to the simplest examples. The Clifford 
algebra  0,1Cl  is isomorphic into a set of complex numbers. It can be represented 
conventionally by means of an imaginary unit i , or else via a real matrix. 

 

                             0

0 1
.

1 0
 

   
τ  
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Henceforward, in our analysis, we shall have to fall back upon a real irreducible 
representation of the algebra  2,1Cl : 

 

              0

0 1
1 0

 
   

τ ,    1

0 1
1 0
 

  
 

τ ,     2

1 0
0 1
 

   
τ . 

 
Using the introduced notation we shall find that the Clifford algebra  0,3Cl , 

which is isomorphic to the body of quanternious may be realized by means of three 
4 x 4 matrices: 

 

              (0,3),1 0 1

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 
 
   
 
 
 

γ τ τ , (0,3),2 0 2

0 0 1 0
0 0 0 1

,
1 0 0 0

0 1 0 0

 
    
 
 
 

γ τ τ  

 

               (0,3),3 2 0

0 1 0 0
1 0 0 0

.
0 0 0 1
0 0 1 0

 
    
 
 

 

γ E τ  

 
In these formulas the symbol   demotes the tensor (Kronecker-type) product of 

matrices, whereas nE  (here and henceforth) is the n  by n  unit matrix. 
The algebra  0,7Cl  can be represented by means of seven 8 x 8 matrices. 

Notating these matrices in explicit form appears to be rather cumbersome, therefore we 
only present the formulas to set up these matrices: 

 
       (0,7),1 0 1 2  γ τ τ E , (0,7),2 0 2 2  γ τ τ E , (0,7),3 2 0 1  γ E τ τ , 

 
        (0,7),4 2 0 2  γ E τ τ , (0,7),5 1 2 0  γ τ E τ , (0,7),6 2 2 0  γ τ E τ , 

 
                (0,7),7 0 0 0  γ τ τ τ . 
 
If ( , ),p q iγ  1,2,...,i p q   are the Clifford gamma-matrices of the n  x n  

dimensionality  ,Cl p q , than the gamma-matrices of algebra  1, 1Cl p q   have 
2 2n n  dimensionality and can be obtained from the formulae 

 

 

   

1 ( , ),1, 1 ,

0 21, 1 , 1 1, 1 , 2

, 1,2,..., ,

, .
p q ip q i

n np q p q p q p q

i p q 

       

   

   

γ τ γ

γ τ E γ τ E
    (5) 
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If we use formula (5) to the gamma-matrices of  0,7Cl  algebra then we get 

16 x 16 matrices that realize  1,8Cl . Here it is to be noted that all skew-symmetric 
matrices will be numbered as 1 to 8, whereas the matrix (1,8),9γ  will be symmetric (with 
a positive signature). 

Now that the representations for the algebra    0,1 , 0,3Cl Cl  and  0,7Cl  are 
made available to us, we can notate the general formulae for a series of the Clifford 
algebras  0, 8Cl k n , where 1,3,7k  . Let (0, ),k iγ  be the realization of  0,Cl k  for 

1,3,7k   then we have 
 

(0, 8 ), (0, ), (1,8),9 (1,8),9

(0, 8 ), 1 (1,8), 16 16

(0, 8 ), 8 1 (1,8),9 (1,8), 16 16

(0, 8 ), 16 1 (1,8),9 (1,8

... ... ... ,
1,2,..., ,

... ... ... ,
... ... ... ,

k n i k i

k n k j k j

k n k j k j

k n k j k

i k


  

   

   

   


    

     

  

γ γ γ γ

γ E γ E E
γ E γ γ E E
γ E γ γ ),9 (1,8), 16 16

(0, 8 ), 8( 1) 1 (1,8),9 (1,8),9 (1,8),

... ... ... ,
... ... ... ... ... ... ... ...

... ... ,

1,2,...,8.

j

k n k n j k j

n

j

    

   

    



γ E E

γ E γ γ γ


 

 
It is just in this particular way that one is able to deduce the realizations of all 

algebras from Table 1, except for the series of  1,8Cl n . The  -matrices of the 

Clifford algebra for  1,8Cl n  are obtained from formula (5) in terms of realizing the 

algebra  0,7 8( 1)Cl n  . Thus, we have a chance to develop the explicit formulas 
for finding the real matrix representation of any Clifford algebra included in Table 1. 

It is well to bear in mind that the notation of operators (which match the  -
matrices of Clifford algebra) using the coordinate transformation formulas is by far 
more compact as compared to the matrix-represented versions. This is accounted for 
by matrix sparseness of the given operators. Examples of this type of reprentation for 
algebras      0,1 , 0,3 , 0,7Cl Cl Cl  and  1,8Cl  are listed in Table 2. As a result, we 
have the systems of transforms for the space dimensions amounting to 2, 4, 8 and 16, 
respectively. 

As seen from the above Table 2, the formulas of coordinate transformation of the 
operators for these particular systems are notated as sign-changing permutations. 
Representing the operators by way of sign-changing permutations is not only more 
compact as compared to the matrix representation (it requires less memory space to 
retain information), and also it is more efficient computationally. 
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Notice again that the systems of transformations (which we are seeking) will 
incorporate the negative-signature operators only (i.e., those for which condition (3) is 
met). To be more specific, the transformation numbered as 9 for 16-measurable space, 
even if it is a basic element of the Clifford algebra  1,8Cl , is beyond the scope of 
further analysis. In terms of formalism, it is indicative of the change-over to the 
nonmaximal algebra  0,8Cl  with a purely negative signature. 

We shall credit the system of transformations obtained in tabulated form as the 
orthogonal sign-changing permutations. 

Note that in the case where the space dimension is equal to 2mn  , it is necessary 
to perform bundling of this particular space into subspaces whose dimensions 
correspond to the power of 2. 

 
TABLE 2: Operators represented by coordinate transformation formulas 

 
n i ( , ),p q iA  

2 1 (x2, -x1) 

4 
1 
2 
3 

(x4,  x3, -x2, -x1) 
(x3, -x4, -x1,  x2) 
(x2, -x1,  x4, -x3) 

8 

1 
2 
3 
4 
5 
6 
7 

(x7,  x8,  x5,  x6, -x3, -x4, -x1, -x2) 
(x5,  x6, -x7, -x8, -x1, -x2,  x3,  x4) 
(x4,  x3, -x2, -x1,  x8,  x7, -x6, -x5) 
(x3, -x4, -x1,  x2,  x7, -x8, -x5,  x6) 
(x6, -x5,  x8, -x7,  x2, -x1,  x4, -x3) 
(x2, -x1,  x4, -x3, -x6,  x5, -x8,  x7) 
(x8, -x7, -x6,  x5, -x4,  x3,  x2, -x1) 

16 

1 
2 
3 
4 
5 
6 
7 
8 

(9) 

(x15,  x16,  x13,  x14, -x11, -x12, -x9, -x10,  x7,  x8,  x5,  x6, -x3, -x4, -x1, -x2) 
(x13,  x14, -x15, -x16, -x9, -x10,  x11,  x12,  x5,  x6, -x7, -x8, -x1, -x2,  x3,  x4) 
(x12,  x11, -x10, -x9,  x16,  x15, -x14, -x13,  x4,  x3, -x2, -x1,  x8,  x7, -x6, -x5) 
(x11, -x12, -x9,  x10,  x15, -x16, -x13,  x14,  x3, -x4, -x1,  x2,  x7, -x8, -x5,  x6) 
(x14, -x13,  x16, -x15,  x10, -x9,  x12, -x11,  x6, -x5,  x8, -x7,  x2, -x1,  x4, -x3) 
(x10, -x9,  x12, -x11, -x14,  x13, -x16,  x15,  x2, -x1,  x4, -x3, -x6,  x5, -x8,  x7) 
(x16, -x15, -x14,  x13, -x12,  x11,  x10, -x9,  x8, -x7, -x6,  x5, -x4,  x3,  x2, -x1) 
(x9,  x10,  x11,  x12,  x13,  x14,  x15,  x16, -x1, -x2, -x3, -x4, -x5, -x6, -x7, -x8) 
(x1,  x2,  x3,  x4,  x5,  x6,  x7,  x8, -x9, -x10, -x11, -x12, -x13, -x14, -x15, -x16) 

 
Our next objective is to analyze the statistical properties of transformation systems 

obtained and to compare them with the properties of permutations (the transformations 
proposed in [5] for applications in communication systems).  

Based upon the fact that both types of transformations are the orthogonal operators 
it may be argued that their application will not affect the vector norms. 

It should be emphasized that to maintain the mean value and the dispersion of a 
vector-argument is likewise evident in terms of performing permutation operations. 
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However, in the orthogonal sign-changing permutation an ( , ),p q iA x  has a different 
mean value of coordinates as compared to an initial vector. Hence, the dispersion will 
undergo certain changes. Now let us look into the impact these changes is likely to 
have upon the probability distribution of the average and the dispersion. 

Our further studies will be pursued through the use of a simulation computer 
model in the Mathcad system. Now generate a sample of a normal random value of 
volume n  and apply the transformation randomly sampled from the system which 
complies with the given value of n . We shall calculate the mean value and the 
dispersion for the initial vector and its image. The experiment will be repeated 106 
times. The histograms showing the mean value and dispersion samples deduced are 
illustrated in Fig. 1. 
 

 

FIG. 1: The histograms of the mean value (a) and dispersion (b) of random vector x  and its 
image in the orthogonal sign-changing permutations 

 
Referring to the above Figure, the broken lines correspond to the histograms for 

the mean value and dispersion whereas the points are indicative of the histograms for 
the average and the dispersion of images of this vector ( , ),p q iA x . The computations 
were performed in relation to the space dimension of 4,8,16n  . 

As will be apparent from the above graph, in terms of statistics, it seems 
impossible to distinguish the distributions of basic pointwise characteristics )of the 
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average and the dispersion) for vector x  and vector ( , ),p q iA x . That signifies that the 
influence of transforms ( , ),p q iA  upon these characteristics of a signal is not a demarking 
factor in the data transfer. This fact hold good not only for the normal coordinate 
distribution of vector x , but also for any distribution symmetrical with respect to zero. 

If x  is a discrete delta-correlated signal, then neither application of permutation 
nor that of sign-changing permutation will lead to the variations in the correlation 
properties inside that signal. 

However, the most intriguing issue is the orthogonality between vector x  and its 
images as well as pairwise between the different images of a single vector. 

And now let us get down to analyzing this issue by means of statistical procedures. 
We shall compute two matrices far the random 

 
   [ , ] cos , , [ , ] , , 0,1,..., , 0,1,..., ,i j i jK i j A x A x R i j A x A x i q j q     

 
where 0A x  is considered to mean the vector x  itself, whereas  ,i jA x A x  is the 

correlation factor between the vectors iA x  and jA x . 
For comparison purposes, we shall decide on the permutations whose matrix 

representation can be obtained by taking a module of the corresponding element in the 
operator matrix ( , ),p q iA  (see Table 2). 

Below are given the examples of matrices K  and R  ( 1K  and 1R  for orthogonal 
sign-changing permutations, 2K  and 2R  for permutations). 

 

K1

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1











 ;  R1

1

0.342

0.018

0.06

0.342

1

0.265

0.863

0.018

0.265

1

0.047

0.06

0.863

0.047

1











 ;  ;  

K2

1

0.925

0.69

0.709

0.925

1

0.709

0.69

0.69

0.709

1

0.925

0.709

0.69

0.925

1











 ;  R2

1

0.971

0.73

0.702

0.971

1

0.702

0.73

0.73

0.702

1

0.971

0.702

0.73

0.971

1











 .  

 
 
Now choose some nondiagonal element in these matrices and proceed to perform 

the computations for this element by a factor of 106. Figure 2 gives the histograms for 
the samples already obtained. We shall perform the computations for the space 
dimensions of 4,8,16n  . 

In keeping with the properties of orthogonal sign-changing permutations, all 
nondiagonal elements of matrix 1K  (angle cosines between images) are strictly equal 
to zero. Therefore the histogram for the given index is not shown in the above Figure. 
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Figure 2 indicates that, as the space dimension n  grows, the distributions of the 
angle cosine and the correlation factor between the images, with different permutation 
being applied, also get concentrated close to zero. However, this process occurs at a far 
slower rate them for the correlation factor in the application of sign-changing 
permutations (in this case the angle cosine is always equal to zero). 

The rigorous orthogonality of signals concurrently radiated in different channels of 
a single communication system tends to keep the level of inter-system interferences to 
a minimum. This is just a clear indication of the advantage offered by the noise 
immunity of the communication system that rely upon the systems of orthogonal sign-
changing permutations for code division of channels. 
 

 

FIG. 2: The histograms of empirical distributions of the correlation factor between the images 
of different orthogonal sign-changing permutations (a), the angle cosine between the images of 
different permutations (b) and the correlation factor between the images of different 
permutations (c) 

 
4. CONCLUSIONS 

The present work is basically concerned with the way the maximal system of linear 
orthogonal transformations. This particular system as applicable to a specified non-
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zero discrete signal (vector) permits one to acquire a set of mutually orthogonal 
signals. This system of orthogonal signals can be utilized to ensure the code division of 
channels in the noise-signal phase-shift keying communication systems [6]. 

It is shown herein that the matrix representation of operators for the constructed 
transformation system can be derived as a set of basic  -matrices of negative 
signature for the real matrix representation of the maximal Clifford algebra. 

Based on this correspondence a maximal number of operators in the system of 
transformations with preset space dimension is ascertained. In order to get the operator 
matrices properly computed a series of explicitly notated formulas is provided. 

We have demonstrated that technically the notation of the transformation system 
as a set of orthogonal sign-changing permutation is the most efficient one. We have 
studied the statistical properties of the constructed system of transformations and 
received experimental evidence in support of anticipated properties of the system. 

We have highlighted the advantage of this particular system over the permutation 
procedures [5]. 
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